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Abstract

We study the stability of optical bistable elements against holding field noise
by considering the specific case of a purely dispersive Kerr medium. For small
devices, i.e., those for which the round trip time is small compared to the material
response time, we show that operation of an optical switch with a holding field
intensity a few percent away from the switching value will not be subject to prob-
lems due to the noise in the holding laser. This is due to the extremely rapid in-
crease of the average time between noise-induced switching events as the distance,
in intensity, from the switching point increases. The usual idealized noise models,
e.g., white noise or Ornstein-Uhlenbeck, are not sufficiently smooth for a correct
description of this problem, so we use a more elaborate colored-noise model to
evaluate the diffusion constant in the Fokker-Planck equation for the nonlinear
phase-shift. The time between switching events is then obtained by solving a

first-passage-time problem.



I. Introduction

The proposed use of optical bistable elements (OBE’s) in photonic logic appli-
cations! raises the question of stability against noise.2 We consider specifically an
OBE driven by a cw laser beam with an intensity slightly below the critical value
required for upswitching. The practical utility of such a device clearly requires
that the mean time between noise induced switching events should be large com-
pared to the time between switching instructions. Thus we are interested in inves-
tigating the stability of deterministic states of the device against small fluctuations
in frequency and amplitude of the holding beam. For this purpose we first derive
a Langevin equation for the response of the OBE, in the small-cavity limit, to a
noisy laser field. In the vicinity of a given deterministic solution, the equation is
expanded up to second order in the small fluctuations and the resulting approxi-
mate model is treated by Fokker-Planck theory to estimate the average time for
noise-induced switching. )

This paper is organized as follows: In Section II, we develop a phenomeno-
logical model of dispersive bistability in a ring resonator, including frequency and
amplitude fluctuations of the holding beam. We show that even for a deterministic
susceptibility xpg, frequency fluctuations lead to stochastic dynamics for the nonli-
near phase-shift experienced by the field.3 Section III specializes these results to
the small cavity limit and derives a Langevin-type equation for the nonlinear
phase-shift. In Section IV, we expand this equation up to second order in the
small noise limit, and construct the corresponding Fokker-Planck equation in Sec-
tion V. The explicit noise model is defined in Section VI, which shows that the
conventional Wiener-Levy and Ornstein-Uhlenbeck processes are insufficient to
properly analyze this problem. Section VII evaluates the time between noise-in-
duced switching events by relating the problem at hand to the first-passage time
for a particle escaping from a potential well. Finally, Section VI is a summary

and conclusion.



II. Formalism

We consider a ring resonator whose upper arm is filled by a purely dispersive
Kerr-type medium, see Fig.l. The total length of the resonator is 2(L+£), and the
material nonlinear response is given in terms of a susceptibility xps assumed to
obey the Debye relaxation equation

ax;
—a’t" +Txne=8 EP. 2.1)
where E is the slowly varying envelope of the real intracavity field E(zt):
EGt) = 1 E@p ¥®D 4 cc. 2.2)

The instantaneous frequency {Xz,t) of the intracavity field is

Qzt) = % : (2.3)

For convenience, we choose the phase $(0,t) at the input port of the resonator (z =

0) to be equal to the phase of the incident field E;(t):

Q(oit) = Qi.(t) ’ (2'4)

where
E©0.0 = 1 Exw e 4 co. @.5)

and the amplitude E;(t) is taken without loss of generality to be real. As usual,

we decompose the polarization accordingly as

P(z,t) = % ®(z,t) ei{,(z’t) + c.C. (2.6)



with
®(z,t) = (XQ + an) E(z,t) . 2.7

Here x, is the linear part of the susceptibility. The wave equation for E(zt) is

[vz-é%]5=':—f%’;§ , 2.8)
which yields, with
n2 =1+ 4xx, , (2.9)
Ro® g2 0 _ 4r 88 ;
[vz - @ E eif = o 5 Xn¢Eei® . (2.10)

As is often the case in propagation problems, it is convenient to introduce the

retarded time

Bb=t-ngz/c . .11)
We further assume that {)(z,t) is a function of u only:

Az,t) = Qp) . (2.12)

With the slowly varying amplitude and phase approximation

1 GE Y]

|l_5 =4 R (2.13a)
1 3E

I £ ol << 0, (2.13b)




l(l] %?—- <«< N1, (2.13¢c)
_1_ 9%ne
Xt ot << {1, (2.13d)
Xng << ng , (2.13e)

we obtain readily the wave equation for the slowly varying amplitude E(z,u)

8Eaz( 0 _ [21ri(_1§c E)] Xt Ezp) . (2.14)

Equations (2.1) and (2.14) compose the coupled Maxwell-Debye equations. Since
we neglect absorption in our model of a bistable device, the amplitude of the field
is conserved while propagating through the resonator. Thus introducing

Ezp) = EO.u) | ¥@H) (2.15)
yields readily
2mm,f(u)
Y e —— xae > (2.16)

which after integration gives

2mm )

z
Wz.u) = Y0,u) + J.o dz’ xpo(2'.p) - (2.17)

The electric field (2.15) becomes

E(z,s) = E(0,u) exp(igne(z.n)) , (2.18)



where

20 )
alr—

z
L dz’ xne(Z'.n) (2.19)

is the nonlinear phase-shift experienced by the field inside the resonator. The
Debye relaxation equation (2.1) for the nonlinear susceptibility xns can be used to
obtain an equation of motion for ¢,4. Differentiating (2.19) with respect to u

yields
a¢ 2mm z 2mn () z F;) ’, )
3_:‘ - _c_° % L dz’ xpe(2'.n) + co . dz’ ___Xn;(: A
1 2m (2
=Gttt _L dz’ [6 [E P() - Txne(@'.8)1 »
or finally
O¢ne(z.1) r_ 1 o0 ~ 2m, 1 220
o [ "0 o ] $ne(z.p) = Bz [EPp) . (2.20)

This equation has the same structure as the Debye equation (2.1), except for the
appearance of a supplementary stochastic relaxation term finding its origin in the
field frequency fluctuations. This shows that in general, the dynamics of the non-
linear phase-shift is governed by a stochastic equation, even for a deterministic

Xn¢- In the original (z,t) variables, Eq.(2.20) becomes simply

2m
Bz [EP(zt) . (2.21)

ne(z.t) 1
—E—+F'ﬁ

2|3

] bnez.t) =
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A complete description of the system still requires the use of the standard
boundary condition

E(0,t) = VT E;(0,t) + R E(L,t-At) , (2.22)

where R is the reflection coefficient of the mirrors at the input and output ports
(the other two mirrors are taken to have unity reflection coefficients), T = 1 - R,
and At = (2¢ + L)/c. With Egs. (2.2), (2.4) and (2.5), this yields

EQ,) = VT E0,0) + R el HEAE0L/C) -8 ) gy v ay | (223)

Introducing the cavity round-trip time

tR = At + nL/c (2.24)

and (2.18) finally gives
E(0,t+tg) = VT Eit+g) + R et HO-RHRMnO ) g0 | (225

where we have also performed the transformation t — t + tR.

III. Small cavity limit

Most potential applications of optical bistable elements use micron-size semi-
conductor devices,* for which the round-trip time tg is on the order of picose-
conds, a time short compared to typical medium relaxation times I'"1. If further-
more the typical noise characteristic time tp; (correlation time) is long compared to
tR. then it is safe to perform an adiabatic elimination of the field. This is for in-
stance the case for input lasers of bandwidths as large as tens of Gigahertz.

The linear part of the phase in the recurrence relation (2.25) has the form

AD; = Bi(t) - Bi(t+R) = wtR + Wlr(t+R) - 7(B)] . (3.1)



Here w is the nominal pump laser frequency in the absence of noise, and 7(t) a
stochastic function of zero average which is assumed, in accordance with our ear-
lier remarks, to varying little in the time tR. Hence, we can expand the square

bracket in (3.1) as
(tHtR) - () = tR g{ a tg (Sw/w) , (3.2)

so that
AD; ~ wtr (1 + Sw/w) . (3.3)

Similarly, we expand the incident field as

dE;
Ej(t+tR) =~ Ei(t) + tR _dTl + .. =~ Ei(t) (3.4)

The leading term of Eq.(2.25) becomes then

i( (w + SW)R + dpe(t) )

E(t+tg) = VT Ei(t) + R e E(t) , (3.5

where we have dropped the unambiguous z = 0 argument for clarity. The solution
of Eq.(3.5) is

E(t + ntg) = AR E(n + 1A% VT B (3.6)

where

A= R ei( (w + SWR + dpe(t) ) . G.7)

Since ] | = R = I-T < 1, the adiabatic solution converges to its asymptotic value
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VT Eit)

1 - R exp [i( (w + sw)R + Ppat)] ° (3.8)

E =

after N round trips, where N ~ 30 for R = 0.9. By our assumptions the total
convergence time is small compared to the material response time so that the
asymptotic value can be used in the equation of motion (2.21) for ¢ny, giving the

approximate model

d
-% + (I' + 6T)¢nz =
2
vT Ej(t)
w(l + 1) 1
2moflL c ' I - R exp(i( (w + 6w)tg + épp(®) )} | ° (3.9
where,
=- (1] [2¥e)
*= [ﬂ] [ o ] ' (3.10)

Until now, we have considered pump field frequency fluctuations only, but inten-
sity fluctuations are readily included by the substitution

[Ej? — <Ij>(1+a) , (3.11)
where <I;> is the mean incident intensity and

8T3(t)
<Ip>

a(t) = (3.12)

is a stochastic variable of zero mean describing the intensity fluctuations. It is also
convenient at this point to introduce explicitly the deterministic part A of the

linear cavity phase-shift

A= (g - WR (3.13)
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where w; is the frequency of the cavity mode closest to w. Noting that the phase

(w + Sw)tp may be rewritten as
(w + Sw)tR = -A + WetR + Swtp (3.14)

and that the second term on the RHS of this equality is equal to 2Nx (N integer)
by definition of the cavity modes, Eq. (3.9) becomes

%‘E + (1 + 87)pe = G(1 + sw/wX1 + 61;/<I> ) . 615

(1 -R)?+ 4Rsin3[¢n¢(t) h ;“’tR - A]

Here,
2mglw g Jp
T r =~ L, ° (3.162)
n, Lw

10-1 = [ 0 ] n, n, T , (3.16]))
by =&tk (3.17)

and time is in units of I'"1. In defining the scale intensity I, in (3.16b), we have
used n? = 1 + 4xx = n %1 + 4xxpe/n,?) = 0, + n,I and the steady-state form of
Eq.(2.1). Thus the parameter G is the laser intensity measured )fx; units of the
characteristic intensity I,

IV. Small fluctuations

To study the influence of noise on the bistable device, we expand the equa-
tion of motion (3.15) for the nonlinear phase-shift ¢n, about the noiseless station-
ary solution ¢, corresponding to the constant input intensity <Ij> at the nominal
frequency w. We proceed by introducing the new variable
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U =¢ng - ¢, + SWtR . (4.1)
In the absence of noise, Eq.(3.15) has a stationary state solution defined by
é = A(G,4p) 4.2)

where the function

A(G.bpp) = G — 4.3)
(1 -R)+ 4Rsin=[¢“‘2' ]

is the RHS of Eq.(3.15) in the absence of amplitude and frequency fluctuations.

To second order in u,

A(u) = ¢, + Aju + % A, u? , 4.4)
where
and

P2A

As= 3 (4.6)

$ne =9

In order to proceed, we now make the following additional assumptions:

(i) the relative frequency fluctuations



Sw
f = v ° @4.7)
and amplitude fluctuations
oI;
a= Tl; (4.8)

can be neglected compared to unity.

(ii) Products of u and f and u and a can be neglected.

(iii) The frequency and amplitude fluctuations f(t) and a(t) are stationary random
processes of zero mean, with correlation functions that are smooth enough to make
all following manipulations legal.

(iv) The stochastic processes f(t) and a(t) are uncorrelated, and the frequency
correlation time Te and amplitude correlation time 74 are both short compared to
the deterministic relaxation time of the nonlinear phase-shift ¢p,.

Under these assumptions, a straightforward calculation shows that u(t) is gov-

erned by the equation

A - F) + Fyw) 49)
where
Fou- g+ 3 AW, (4.10)
F, = (¢ + wtR) (f + 'f] +da , 4.11)
and
Ty= —— . (4.12)
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Note that since A, — 1 as the system approaches the turning points, its effective
deterministic response time T, becomes very large in these regions. This is a sig-
nature of critical slowing down. Equation (4.9) allows the study of the interplay
between the rapid noise fluctuations and this sluggish deterministic response of the

nonlinear phase ¢p4.

V. Fokker-Planck equation

Following Van Kampen,5 the Fokker-Planck equation associated with the

Langevin-type equation (4.9) is

oo dF (u,t)
8 =2 rr- - L - du_
at p(u,t) = £ [ [-Fq(u) L dr < Em F,(u_pt-1) > du_,

00
+ % L dr < F,(u,t) Fy(u_p.t-r) > %_] p(u,t)] , (5.1)
where
u_y = u(t-r) , (5.2)

and u(t) is defined as the solution of the deterministic equation

& - Fw . (5.3)

This equation defines a mapping u(0) — u(t), or more generally, u(t) — u(t+r), and
the expression du/du_, is the Jacobian of the inverse of this mapping.

Under the assumption (iii) that products of u and f, respectively a and f, can
be neglected, dF,/8u = 0. In other words, we assume that noise corrections to the
drift term of Eq.(5.1) are negligible, i.e. that the noise is additive. The diffusion

term B(u) is then
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0
B(u) = J. dr < F,(u,t) F,(u_p,t-r) > Edll—
0 U-r
" 00
= | dr @, + wtr)? <FOf(t-r) + HOit-r)> 9%
Jo du_r
L
+ | dr g2 <alta(t-r> , (5.4)
J0

where we have used the explicit form (4.11) of F, and assumption (iv), as well as

the relation
<f(t)i(t,)> = - <f(t,)f(t)> , (5.5)

which is valid for stationary random processes, to obtain the second equality.

In the expression (5.4) for B, the term depending on frequency fluctuations is
multiplied by the coefficient (¢, + wtr)? , while the amplitude fluctuation term is
multiplied only by ¢,2. At optical frequencies, and for devices of several tens of
microns in size, wtg (= 10-1000) >> ¢, (= O(1)) ; therefore, frequency fluctuations
will dominate over amplitude fluctuations unless the normalized amplitude fluctua-
tions are very much larger than the normalized frequency fluctuations. We assume
that this is not the case so that it is permissible to neglect the contribution from
amplitude fluctuations in (5.4).

To evaluate the contribution from frequency fluctuations to the diffusion

coefficient (5.4), we decompose it as

B=B,+B, , (5.6)
where

0

B, = (¢, + WiR)? J- dr <f(t)f(t-r)> ddT“; . (.7)
0 _
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and

oo

B, = (¢, + WtR)? L dr <f(Of(t-r)> % . (5.8)

We will see later that B,, which is given in terms of the correlation function for
the frequency derivative, (¢, + wtr )i', is normally much larger than B,. The ¢,
-part of B, can be traced to the &y term in (3.15), ie., to the stochastic correction
to the material response time. The wtR -part comes from the frequency fluctua-
tion term tR 6w in the denominator on the right-hand side of (3.15). Since wtg
>> ¢, , it is clear that the main physical effect of the noise enters through the
fluctuations of the frequency in the Airy denominator. The correlation function in
B, can be evaluated by using the identity

<FWOft-r)> = -;% F(Of(t-r)> (5.9)

which is vaiid for stationary processes.
For any function W(r), one has then

o0 o0 2
I dr W(r) <f(O)f(t-r)> = - I dr W(r) % <F(O)(-1)>
0

0
e o0
= - W(r) % SO, + L dr %ﬂ % <f(0)f(-7)>
e [o o]
= - W(0) <f(0)i(0)> + %ﬂ <O |, - I dr %‘%ﬂ <f(0)E(-1)>
0
o 2
= - W) <€(O)f(0)> - IO (ops> - J ar EXD 50> (5.10)
0

Here we have used the fact that <f(0)f(-r)> — O for r — oo. The first term in



*W(r)/3r2 vided that W(r) is slowl

Y varying over
e. This yields,

identifying W(r) with du/du_,- :

[~ -]
@ | du 52 du
3 [‘TJ-_JIT‘O <f(0)%> - 3 [‘E{Il"o]o dr <f(0)f(-r)> . (5.11)

du

T
du_, 1 +

T i{‘z +0(m) + O(u) | (5.12)

where the smaj size of u hag also been used, Keeping only the lowest order
terms jn Eq.(5.7) and (5.12) yields finally

Bo = (¢o + WiR)? fo ’

(5.13)
and
B = (4, + wtg): [ -LLdI? = % ] . (5.14)
[(] 0
where

oo
D¢ = f dr <f(Of(t-r)> . (5.15)
0
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V1. Noise Model

So far the noise model has been limited only by the reasonable assumptions
(i)-(iv), but now we must be more specific. The familiar white noise model for
frequency fluctuations does not satisfy the smoothness part of assumption (iii).
This follows from the fact that B, depends on derivatives of the frequency corre-
lation function which do not exist for white noise. The same objection applies to
an Ornstein-Uhlenbeck process, therefore in order to get a finite diffusion constant
it is necessary to use a more elaborate colored noise model. We have chosen to
represent the frequency fluctuations f(t) by the following process:

ftt) = - f0)/rp + n/rp 6.1)
me) = - o(0/7g + azrf VB &) 62)

where £(t) is a gaussian stochastic process
<E(DE(t+)> = 8(r) . | 63)

The field correlation function for the laser can be evaluated by standard tech-
niques® which lead to the conclusion that Ay, can be thought of as the laser

linewidth.
From Egs. (6.2) and (6.3), we get readily

t 3
n(t) = f de &¢) e CVE 4 gy O/ (6.4)
to

and

<n(mn> = 2L o SO (6.5)
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this last relation being valid in the limit t, — -oo. Similarly,
=47 1 -
SO = T (14 /e explet/rg) (6.6)
With the definition (5.13) of D¢y, (6.6) gives
Der= L 8L < 2r, <O 6.7)
W w f ) )

The two contributions B, and B, to the diffusion coefficient become then

B=1 20 s ugy | 68)
and
= D S
B, = B, [ T, T ] : 69)

In the next Section, we use these results to estimate the average time between

noise induced switching events.

VII. Average Time for Noise-Induced Switching

By combining equations (4.10), (5.13), and (5.14) the Fokker-Planck equation

(5.1) can be written in the form
%=i[ﬂp]+B %p, (7.13)

where



A, . (7.1b)

Thus the phase diffusion problem is equivalent to the diffusion of a particle
trapped in the potential well V(u) and subjected to stochastic forces characterized
by the diffusion constant B. As shown in Fig. 2 the potential minimum lies at u
= 0 and the maximum occurs at u = b = 2/(A,T,) . At some finite time a parti-
cle initially at u = 0 will arrive at the potential maximum where it can either fall
back or escape. The average time required for the particle to traverse the distance
Au = 2/(A,T,) between the maximum and minimum points of the potential is a
measure of the time required for escape from the potential well. In order to relate
this description to the original problem we consider the solution of the determinis-
tic steady-state equation (4.2) in the vicinity of an up-switching point, similar con-
siderations hold for down-swiltching. The conditions for up-switching are (see
Eq.(4.2))

¢ = AG9) , (7.2a) .
% =1, (7.2b)
?T'} >0 , (1.2¢)

and they define the switching values (Gg .#s ), as shown in Fig. 3. The solutions
of (4.2) in the vicinity of the switching point can be obtained by expanding
A(¢,G) in a Taylor series through second order in ¢ - ¢; and G - Gg. This
yields the two roots

(7.3a)
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[z¢s 5G ]‘/ :
b=ds+ | : (7.3b)
2

where 6G = |G - Gyl is the distance, in intensity, to the switching point in units
of the scale intensity I,, To the present order of accuracy, the constant A, ,def-
ined by (4.6), can be evaluated at either of the points ¢, or ¢, but the calculation
of A,, defined by (4.5), involves first order corrections so it must evaluated at ¢,.
This yields

A =1- |2¢s A, G , (7.4)

and by (4.12), the deterministic response time T, is given by

Ty= ——— . (7.5)

Bac

Substitution of these results into the expression given above for Au, the distance
between the minimum and maximum points of the potential, shows that

l2¢s G
Au = 2 Tz— » (7.6)

and comparison with (7.3) shows that this is exactly the distance between stable
and unstable branches in Fig. 3.

The calculation of the average escape time from the potential well is an
example of a "first passage time" calculation for which the general result is well
known.” In the present case the average escape time T', for a particle initially at

u = 0, is given by
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T = % J-ob du exp[‘—’%u] J-.u dv exp[- !](31') ], .7

where the boundary conditions include an absorbing barrier at u = b, the location
of the potential maximum, to represent the escape of the particle. In terms of the
original problem, T i§ the time required for a bistable system originally operating
at the stable point ¢, to migrate to the unstable point ¢,. Since the system will
then very rapidly either return to ¢, or switch up to the next stable branch, ™ is
a suitable measure of the time for noise induced upswitching. Thus the particle
escape time serves as an estimate of the average time between noise induced
switching events.

If the central maximum in the potential is large compared to the diffusion
constant, i.e., V(b) >> B, then the function exp[V(u)/B] is sharply peaked at u = b,
and (7.7) can be evaluated by the method of steepest descents to yield” the well

known Arrhenius formula from chemical reaction theory:

2mm[vmvo] o
il 2
= N ) ’ (7'8)

=1

which becomes, after using (7.1b) for V(u),

T = 24T, exp[—v—](;—’)] : (1.9)

In order to check the applicability of this formula, we take as a typical case
a bistable device with dimensions L ~ £ ~ = 0.01 cm, and mirrors with R =~ 0.9.
The nonlinear material is taken to be InSb with n, = 4, n, = 3x10™4 cm? /W and
I' = 10° s~2. This gives a round trip time tg =~ 2 ps. For the laser we take w =
1016 s~1 noise correlation time Te = Ips and linewidth A; = 1 GHz® The scale
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intensity I, = 6.25 W/cm3. Assuming a linear cavity phase-shift A = -m, the first
up-switching point occurs at ¢¢ = 1.31 and Gg = 2.98 (switching intensity L5 =
18.6 W/cm?). The curvature coefficient A, = 1.7 and the deterministic response

time Tis given by
Tyt = 2.1 V&G . (7.10)

In all of these calculations it should be remembered that times are measured in
units of I'". Evaluation of (6.8) and (6.9) gives B, = 4x10-¢ and B, = 4.2x1073

Vv6G; therefore if §G >> 10-, B, >> B, as stated in Sec.V. The potential maxi-

mum is given by
V(b) = 2.1 (6G)¥/2 , (7.11)

so the condition V(b) >> B becomes §G >> 2x1073. Thus when the operating in-
tensity is below the upswitching point by a percent or so, the use of (7.9) is justi-
fied. For the representative numbers used above (7.9) is

T* = —3— exp[500 6G] (ns) , (1.12)
VG

where we have restored conventional units. For permissable values of 8G, this
result shows that the average time for noise induced switching increases very rap-
idly as the operating intensity I; departs from the critical switching intensity L.
This behavior is illustrated in Table I for the representative parameter values used

in the numerical estimates.

VIII. Summary and Conclusions

We have studied the stability of OBE’s against holding field noise by consid-
ering the specific case of a purely dispersive Kerr medium. For small devices,
i.e., those for which the round trip time is small compared to the material response
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time, the intracavity field can be adiabatically eliminated and this leads to a Lan-
gevin-type equation for the nonlinear phase-shift. This equation involves the
amplitude fluctuation §I, the frequency fluctuation éw and the time derivative of
the frequency fluctuation, d(sw)/dt. This last feature makes the theory quite sensi-
tive to the details of the frequency noise model. This sensitivity became apparent
after the exact Langevin equation was expanded about a stable deterministic solu-
tion and the corresponding Fokker-Planck equation was derived. The diffusion
constant B in the Fokker-Planck equation is dominated by the frequency-noise
contribution and furthermore, B becomes infinite if the frequency fluctuations are
described by either a white noise or an Ornstein-Uhlenbeck process. We were
therefore compelled to use a suitable colored-noise model to describe the frequency
fluctuations.

The approximate Fokker-Planck treatment is valid in the vicinity of any
stable solution, but the interesting case from the standpoint of applications is when
the solution is near the switching point. In this region the phenomenon of critical
slowing down is the dominant feature. The deterministic response time T, div-

-erges like 1/v6G near the switching point, and an uncritical use of (7.12) would

lead one to conclude that the noise induced switching time T bec;omes infinite at
the switching point (§6G = 0). This is not the case, since the validity of (7.12) was
seen to impose a lower bound on §G. In fact, for solutions too close to the
switching point, it would be necessary to include terms which were neglected in
the derivation of the Fokker-Planck equation. This would lead to a qualitative
change in the effective potential shown in Fig. 2, and the solution ¢, would no
longer be stable.? In other words, our treatment is not valid when the intensity is
too close to the switching point. In practice this makes no difference since the
laser intensity cannot be controlled with sufficient precision to violate the lower
bound on §G. For permissable values of 6G, Table I shows a spectacular increase
in T* as the operating point is moved away from the switching point. We there-
fore conclude that operation of an optical switch with a holding field intensity a
few percent away from the switching value will not be subject to problems due to

the noise in the holding laser.
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Table

§G T*s)
01  0.000004
02 0.000467
03  0.0566
04 728
05  966.0

Table I. Average time for noise induced switching for representative values of §G
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Figure Captions

Fig. 1. Ring cavity of length 2(L + £), with the upper arm of length L filled by
a Kerr nonlinear medium of nonlinear susceptibility xpe. The input and output
mirror have intensity reflectivity (transmission) coefficient R (T), with R + T = 1.

The other two mirrors have unit reflection.

Fig. 2. Normalized potential V(x) = V(u)(2/A,3T,%), where x = A,Tou/2. The
minimum of V(x) is at the holding point a = u = 0 and the maximum occurs at u
=b= 2/(A,T,) .

Fig. 3. Bistability curve in the vicinity of the upswitching point (Gg, ¢s): a is the
operating point and b the corresponding point on the unstable branch. They cor-
respond to the points a and b in Fig.2.
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